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ABSTRACT

The problem of Cholesky factorization of a sparse matrix has been very well investigated

on sequential machines. A number of efficient codes exist for factorizing large unstructured

sparse matrices, for example, codes from Harwell Subroutine Library [4] and Sparspak [7].

However, there is a lack of such efficient codes on parallel machines in general, and distributed

memory machines in particular. Some of the issues which are critical to the implementation

of sparse Cholesky factorization on a distributed memory parallel machine are: ordering,

partitioning and mapping, load balancing, and ordering of various tasks within a processor.

Addressing these issues optimally for unstructured sparse matrices is a challenging task.

In this paper we focus on the effect of various partitioning schemes on the performance of

sparse Cholesky factorization on the INTEL iPSC/860. We also propose a new partitioning

heuristic for structured as well as unstructured sparse matrices, and compare its performance

with the other schemes.
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1 Introduction

The problem of Cholesky factorization of a sparse matrix has been very well investigated

on sequential machines. A number of efficient codes exist for factorizing large unstructured

sparse matrices, for example, codes from Harwell Subroutine Library [4] and Sparspak [7].

However, there is a lack of such efficient codes on parallel machines in general, and distributed

memory machines in particular. This is partly because these machines are relatively new

and there is not much experience to solve unstructured problems on these machines. How-

ever, there has been reasonable success in putting unstructured Euler codes on a distributed

memory parallel machine [3]. (For these codes, in contrast to unstructured sparse factoriza-

tion codes, ordering of various tasks such as computation and communication, within each

processor is not an issue.)

Some of the issues which are critical to the implementation of sparse Cholesky factor-

ization on a distributed memory parallel machine are: ordering, partitioning and mapping,

load balancing, and ordering of various tasks within a processor. Addressing these issues

optimally is a challenging task. For example, it is not clear what is a good ordering scheme

for parallel factorization. (Recently, reordering schemes for parallel factorization have been

suggested in the literature, for example [12]. But, we are not aware of any performance fig-

ures for these orderings on an actual distributed memory parallel machine. ) The problem

becomes more complex because a solution obtained at a step may influence the solution at

the next step. For example, an ordering which minimizes fill may lead to an unbalanced

load.

In the past, some attempts have been made to implement the Cholesky factorization

for structured sparse matrices on the INTEL iPSC/2. George et al. have described an im-

plementation of the fan-out algorithm [9]. Recently, Ashcraft et al. [1] have presented a

compute-ahead implementation of fan-in the algorithm. Although, relative performance of

their implementation is better than the basic fan-in and fan-out implementation, the abso-

lute performance is far from desirable. For example, the factorization time reported for a

75 x 75 grid problem using compute ahead fan-in is 1.561 seconds on a 64-processor machiie.

In megaflops this is approximately 0.075 mflops per node. This is significantly low when one

considers the performance of the existing sequential codes on RISC based workstations. The

MA27 code on IBM RS/6000, 41MHz machine, gives 11 MFlops for medium sized matrices

[15]. Ashcraft et al. [2] have compared the communication requirement of distributed mul-

tifrontal schemes with the fan-out and fan-in schemes. It should be noted that most of the

above mentioned studies have been done for structured sparse matrices arising from regular

grids. For these problems, ordering, partitioning, and load balancing do not pose a significant
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problem. Nested dissection is used for ordering these problems as it gives optimal-order fill
and well-balanced elimination trees [7]. The partitioning scheme suggested in [8] for regular
grid problems results in good load balancing and low communication cost. For unstructured
sparse matrices not many results have been reported.

Venugopal and Naik have recently studied partitioning and scheduling methodology for
unstructured sparse matrix factorization on distributed memory machines [13]. However,
they do not report any performance results of their studies on an actual machine.

We feel that there is much more to be done before one can possibly get good performance
for sparse Cholesky factorization on a distributed memory parallel machine. Our effort is a
step in that direction. In this paper, we study the effect of various partitioning schemes on
the performance of sparse Cholesky factorization on the INTEL iPSC/860. We also propose
a new partitioning heuristic for structured as well as unstructured sparse matrices, and com-
pare its performance with the other schemes. The distributed factorization algorithm which
has been implemented is a variation of the distributed fan-out algorithm. The distributed
fan-out algorithm is known to have greater interprocessor communication costs than the
other distributed algorithms [11]. We still selected this algorithm because (i) it is simple to

implement, and (ii) the focus of our research was to study the effect of partitioning on the
performance of factorization.

The rest of the paper is organized as follows. In the next section we review the basic
Cholesky algorithm for solving a linear system of equations. Section 3 gives a brief de-
scription of various partitioning schemes including the proposed heuristic. In Section 4 we
briefly describe the implementation of factorization algorithm. The experimental results are

discussed in Section 5. Finally in Section 6 we give the conclusions.

2 Background

Consider a system of linear equations,

Ax = b,

where A is an n x n symmetric positive definite matrix, b is a known vector and x is the
unknown vcct,; to be computed. One way to solve such linear systems is to compute the

Cholesky factorization of matrix A,

A = LLT,

where L is a lower triangular matrix. Then x is computed by solving the triangular systems

Ly = b, and
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LTX = y.

We now briefly discuss the basic steps involved in the solution of such a system on a dis-
tributed memory parallel machine.

(i) Ordering : Find an ordering P of the sparse matrix A so that the Cholesky factor L
of PAPT suffers little fill and at the same time reduces the parallel time.

(ii) Preprocessing: It consists of three parts. The first part is to determine the structure of
L. The second part is to obtain the partitioning and mapping, that is the distribution

of the columns of A amongst various processors of the machine. The third part is
to create the required data structures for each processor for the numeric factorization

step.

(iii) Numeric Factorization: Compute the Cholesky factor L of PAPT.

(iv) Triangular Solution: Solve Ly = Pb and LTz = y, and then set x = PTz.

In this paper, we have focussed on the effect of partitioning on the performance of nu-

meric factorization. We discuss them in a little more detail.

Partitioning. Given a graph G of n nodes associated with the L + LT matrix, find p
(n >> p) partitions of the graph with (i) large number of intra-partition edges and very few

inter-partition edges, and (ii) nearly equal computational load for each partition.

Numeric Factorization. The distributed algorithms proposed in the literature are based
on the column-oriented Cholesky factorization. Following [8, 14], the basic column-oriented

algorithm can be expressed as

begin

for j = I to n do

begin

fork= 1toj-1 do

cmod(j,k)

cdiv(j)

end

end
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where,
cmod(j,k) : is modification of column j by column k (k < j), and is also referred as the
update computation.

cdiv(j) : is division of column j by a scalar, and is also referred as the factorize computation.

The three basic distributed algorithms reported in the literature are distributed fan-in,
distributed fan-out and distributed multifrontal. We do not discuss these algorithms here.
For a detailed discussion of these algorithms along with their advantages and disadvantages,
one may refer to [11]. For this paper, we have implemented a variation of the distributed
fan-out algorithm.

3 Partitioning Schemes

In this section we first briefly discuss some of the existing partitioning schemes which have
been investigated in this paper, and finally we describe a new partitioning heuristic for
structured as well as unstructured sparse matrices.

3.1 Subtree-to-Subcube

This scheme was suggested by George et al. [8] for regular grid problems. An example
illustrating the partitioning and mapping of a 7 x 7 grid is shown in Figure 1. For details

one can refer to [8].

3.2 Contiguous column

In this scheme contiguous columns of a sparse matrix are assigned to a partition such that
there is a uniform distribution of columns amongst various partitions.

3.3 Contiguous column with uniform operation count

In this scheme contiguous columns of a sparse matrix are assigned to a partition such that
the number of operations required to factorize columns in a partition is nearly equal for all
the partitions.

3.4 Wrap-around

In this scheme ith column of a sparse matrix is assigned to (i - 1) mod p partition, where p

is the total number of partitions.
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3.5 Heuristic

We first describe how to form a single partition using this scheme. Consider the Cholesky

factorization of a given sparse symmetric positive definite matrix A into LLT. Assume

that the matrix A has already been ordered by some permutation. Let G(F) be the graph
associated with F = L + LT. In the discussion here and the rest of the paper also, we use
the term node of a graph G and a column of sparse matrix A interchangeably. Pick a node

(column) of G, which does not depend on any other nodes (columns) for factorization, as

the first node of the partition, We now do a breadth first search on G starting with this

node. At any level of the breadth first search we have a set of visited nodes. Out of this set
we select only those nodes which satisfy some criterion. The rest of the nodes are rejected,

and the breadth first search is continued from the selected set of nodes. This process can be

viewed as pruning of the breadth first search tree. We stop when either the computation

load corresponding to the partition reaches a fixed threshold, or there are no more unvisited

nodes.

Before forming the next partition, we mark all the nodes which were selected for the pre-
vious partition as visited. Note that all the nodes which were rejected are marked unvisited.

In case a starting node (which does not depend on any other nodes for factorization) is not
found for the new partition, an arbitrary node from the unvisited nodes is selected. It is
possible that after forming all the partitions there are some free nodes, that is nodes which

have not been included in any partition. These nodes are distributed such that a free node
is assigned to a partition which has most of its neighbors.

Selection criterion. A node is included in the partition if most of its neighbors have already

been included in the partition. The selection criterion is made stronger with the addition of
more nodes in the partition. Consequently, at later stages of the partition formation, fewer

and fewer nodes from a visited set of nodes are selected. Concretely, a node i is included in
the partition if

indeg(i) opc> a- (1)
outdeg(i) mop

where,
indeg(i).: for a given partition it is the number of nodes within the partition that are adjacent

to node i,

outdeg(i).: for a given partition it is the number of nodes outside the partition that are

adjacent to node i,
opc.: is the number of flops associated with the current partition,

mop.: is the number of flops needed to factorize the complete sparse matrix divided by the

number of partitions, and
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a: is a tunable parameter with value greater than equal to zero.

Note that for a = 0 there is no pruning of the breadth first search tree. We illustrate the

partitioning heuristic with the help of an example. Consider the graph G(F) of Figure 2a.

We indicate the operation count associated with a node i by c(i). The total operation count

for the example of Figure 2a is 75. Let us assume that we are interested in forming two

partitions. Thus the value of mop in Eq.(1) is 38. The partition formation by the heuristic

scheme with a = 0 is illustrated in Figure 2b. During the formation of the first partition

we pick node 1 as the starting node. Note that node 1 does not depend on any other node

for factorization. The operation count associated with this node is 3. Thus the value of opc

(which is the number of floating point operations corresponding to nodes currently in the

partition) is initialized to 3. At the next level we select nodes 4 and 7 (See Eq. (1)). The

value of opc at this point becomes 24. In the next level, we first select node 5 which makes

opc = 33, and then node 6 is selected which takes the value of opc to 44. Since the value of

opc at this point is greater than the value of mop, the formation of first partition is stopped.

Similarly the second partition is formed starting with node 2.

4 Implementation

Our factorization scheme can be considered as a compute-ahead implementation of the fan-

out algorithm. In our algorithm description, which follows next, we make a distinction

between two types of computations for a typical column at a processor. The first is the

update computation which is the modification of a column by other columns, and the other

is the factorize computation which is the division of a column by a scalar. The factorize

computation is done on a column when it is completely updated by all the required columns.

The complete algorithm can be best explained informally by considering a ready queue at

each processor. The ready queue is initialized with the column numbers which do not require

any update, and are ready for factorization. The program at a node can be described as

follows.

Algorithm: Distributed factorizaton

10 while ready queue is not empty do

* factorize the first ready column available in the queue.

e send the factorized column to off-processors.

e update the required local columns by the factorized column.

* update the ready queue, that is a column which has been

completely updated is inserted in the ready queue.

end while
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if all local columns have been factorized and sent then stop.

if a column is received then

* update the dependent local columns.

9 update the ready queue.

end if

go to 10.

The detailed code for the implementation can be found in [161.

5 Experimental Results

We did a series of experiments to evaluate the performance of various partitioning schemes on

INTEL iPSC/860. The experiments were done on both structured and unstructured sparse

matrices. Table 1 lists three structured matrices arising from nine-point finite difference

operators on square grids. In the first set of experiments, we evaluated the performance

of five different partitioning schemes for these matrices. The five partitioning schemes are:

(i) wrap around (wr), (ii) contiguous column with uniform distribution of columns (ccl),

(iii) contiguous column with uniform distribution of operation counts (cc2), (iv) subtree-

to-subcube (ss), and (v) heuristic (hr). For all the schemes, except subtree-to-subcube, we

used the minimum degree ordering given in sparspak [7 for ordering the sparse matrices. For

subtree-to-subcube partitioning the matrices were ordered using nested dissection ordering

[7]. Table 2 summarizes the total factorization time in seconds (tt) for different partitioning

schemes for three types of matrices with varying number of processors. It is clear from the

table that the performance of wr and ccl is not comparable with the other three schemes.

This can be explained by further examining the performance of a 75 x 75 grid problem on a

4-processor machine. We observed the distribution of operation count, computation time (the

time spent on computation on a processor), and total time on all the four processors. These

observations are tabulated in Tables 3a, 3b and 3c. It is interesting to observe from these

tables that the reason for the bad performance of wr is different from the one for ccl. The

wr scheme results in uniform distribution of operation counts, but the time spent in com-

munication is relatively greater. On the other hand, the eel scheme results in non-uniform

distribution of operation counts which is mainly responsible for the its bad performance.

Another observation can be made from Table 2, that is, as the number of processors

is increased the performance of cc2 and hr becomes better than that of ss. The worse

performance of ss could also be due to the use of distributed fan-out algorithm for numeric

factorization. The distributed fan-out algorithm is known for not exploiting the subtree-to-
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subcube mapping effectively [11]. We also give the performance of various schemes in mflops
on a 16 processor machine (see Table 4). For 100 x 100 grid problem we obtained 9.65 mflops
which is around 0.6 mflops per processor.

The second set of experiments was done on unstructured matrices from Harwell Boeing
Collection [5] (see Table 5). For these matrices we compare the performance of cc2 with hr.
The results are summarized in Table 6. For each scheme, we have listed the computation
time (ct), and the total time (tt). We have also listed the performance in mflops for the two
schemes. We observe that the performance of hr is better than that of cc2. To understand
this behavior, we observed the distribution of operation counts, computation time, and total
time over the processors of the machine. We summarize these results in Table 7. For both
the schemes we have listed the standard deviation in,
(i) operation count as a fraction of average operation count on a processor (sdopc),
(ii) computation time as a fraction of average computation time on a processor (sdct), and
(iii) total time as a fraction of average total time on a processor (sdtt).

It is obvious from this table that both the schemes result in balanced computation and
communication. The performance of cc2 is bad because it results in large volume of commu-

nication traffic as compared to the hr scheme.

6 Conclusion

In this paper, we have studied the effect of various partitioning schemes on the performance
of sparse factorization on INTEL iPSC/860 for structured as well as unstructured sparse
matrices. We show that the proposed partitioning heuristic works for both structured and
unstructured sparse matrices. The absolute performance of the factorization step was not
that impressive. We believe it can be improved by implementing a distributed algorithm
which (i) maximize the performance at each processor by exploiting the cache behavior, and
(ii) orders the computations at each proc 3sor to minimize the c -mmunication overheads.
One such algorithm, in our opinion, is a distributed multifrontal scheme.
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Table 1. List of structured matrices arising from nine-point finite difference operators on a

square grid.

grid problem order nonzeros operation count
50 x 50 2500 12202 2032374
75 x 75 5625 27677 7227520
100 x 100 10000 49402 17562662

Table 2. Performance of various partitioning schemes for structured matrices.

grid problem np tt (sec)
wr ccl cc2 ss hr

50 x 50 2 1.28 0.95 0.92 0.92 0.94
4 1.33 0.82 0.67 0.73 0.66
8 1.65 0.82 0.44 0.70 0.44
16 1.87 0.84 0.29 0.64 0.36

75 x 75 2 4.23 3.04 2.88 2.88 3.36
4 4.81 2.51 2.13 1.92 2.04
8 5.36 2.45 1.29 1.58 1.29
16 7.31 2.52 0.82 1.52 0.96

100 x 100 2 7.96 7.31 6.89 6.87 8.22
4 5.44 5.97 4.97 4.43 4.91
8 4.21 5.72 2.97 3.45 2.83
16 3.53 8.26 1.85 3.28 1.82

0
o
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Table 3a. Distribution of operation counts for a 75 x 75 grid problem on a 4-processor

machine.

part. scheme p0 pl p2  p3

wr 1804438 1804649 1813194 1805239
ccl 1266845 1856797 1266953 2836925
cc2 1777056 1803289 1784693 1862482
ss 1830051 1805154 1814518 1777797
hr 1820510 1818536 1807575 1780899

Table 3b. Distribution of computation time (in sec) for a 75 x 75 grid problem on a 4-

processor machine.

part. scheme p0 pl p2 p3
wr 1.61 1.80 1.59 1.76
ccl 0.84 1.30 0.84 2.38
cc2 1.19 1.38 1.24 1.40
ss 1.66 1.65 1.67 1.66
hr 1.32 1.36 1.34 1.22

Table 3c. Distribution of total time (in see) for a 75 x 75 grid problem on a 4-processor
machine.

part. scheme p0 pl p2 p3

wr 4.81 4.81 4.81 4.81
ccl 0.91 1.40 0.91 2.51
cc2 1.33 1.61 1.38 2.13
ss 1.92 1.92 1.92 1.92
hr 1.99 2.03 2.04 1.51
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Table 4. Performance in mflops of various partitioning schemes for a 16-processor machine

grid problem mflops
wr ccl cc2 ss hr

50 X 50 1.09 2.42 7.00 3.18 5.65
75 x 75 0.99 2.87 8.81 4.75 7.53

100 x 100 4.98 2.13 9.49 5.35 9.65

Table 5. List of Harwell Boeing test matrices.

matrix order nonzeros operation count
bcsstkl6 4884 147631 184196735
bcsstkl7 10974 219812 214447177
bcsstk18 11948 80519 162705482
bcsstk28 4410 111717 40562546

Table 6. Performance of Harwell Boeing test matrices.

matrix cc2 hr mflops
ct tt ct tt cc2 hr

bcsstk16 8.77 41.15 7.88 32.07 4.48 5.74
bcsstkl7 11.07 37.53 10.20 26.95 5.71 7.96
bcsstk18 9.30 26.47 7.18 21.97 6.15 7.41
bcsstk28 2.21 9.00 1.75 5.97 4.5 6.79

Table 7. Load distribution of Harwell Boeing test matrices.

matrix sdopc sdct sdtt
cc2 hr cc2 hr cc2 I hr

bcsstkl6 0.01 0.01 0.07 0.05 0.37 0.42
bcsstkl7 0.01 0.02 0.07 0.04 0.32 0.31
bcsstkl8 0.01 0.03 0.09 0.03 0.22 0.10
bcsstk28 0.02 0.03 0.07 0.04 0.35 0.23
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1 25 2 43 3 28 4 0 0 0 2 1 1 1

17 26 18 44 19 29 20 0 0 0 3 1 1 1

5 27 6 45 7 30 8 0 0 0 0 1 1 1

37 38 39 46 40 41 42 0 1 2 1 3 0 1

9 31 10 47 11 34 12 2 2 2 2 3 3 3

21 32 22 48 23 35 24 2 2 2 3 3 3 3

13 33 14 49 15 36 16 2 2 2 0 3 3 3

Ordering Partitioning

Figure 1. Nested dissection ordering and subtree-to-subcube partitioning on 7 x 7 grid.
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W)=3 c(6 I I 6)=1

c(2) = 3 c(7) = 13

c(3) = 7 c(8) = 12

c(4) = 8 c(9) = 9
c(5) = 9

Figure 2a. The graph G(F). (c(i) is the operation count associated with node i)

level= 0 opc= 3 level = 0 0 OPC = 3

1 2

47

level= 1 opc = 24 3

level I opc= 19

9 2

5 6

8 3
level =2 opc =44

4 7 level 2 31

1 9 2

Formation of first partition Formation of second partition

Figure 2b. Various stages of partition formation.
(opc gives the current operation count of a partition)
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